Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Insects ; 15(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667370

RESUMEN

The maintenance of a highly productive colony of anopheline mosquitoes requires standardized methods in order to obtain a sufficient number of homogeneous individuals for malaria research. In this context, nutritional status may affect survival, fecundity, and the capacity to support pathogen development. Here we assess the effects of carbohydrate sources on fecundity, survival, and susceptibility to Plasmodium vivax infection in colonies of Anopheles darlingi and Anopheles deaneorum mosquitoes. Newly emerged females from each species were fed either 10% sugar or 15% honey solutions until the end of each experiment. The type of carbohydrate meal did not impact any entomological parameters for An. deaneorum, except for survival. For both species, honey meal significantly increased median survival post-emergence by three to four days, probably due to its nutritional value. For An. darlingi fed with honey, a higher mean frequency in stage 5 was observed at 48 h post-blood-meal, which could indicate a delay in the digestion process. However, no effects on fecundity parameters were observed. Regarding susceptibility, An. darlingi fed with sugar exhibited a low intensity of sporozoites, although any negative effects of sucrose on sporozoites invasions in the salivary glands are unknown. Based on the increase in mosquito survival, a carbohydrate source composed of 15% honey solution could be better for maintaining An. darlingi and An. deaneorum in the lab-rearing context.

2.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568969

RESUMEN

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , ADN/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , ARN/metabolismo
3.
Sci Rep ; 13(1): 18207, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875508

RESUMEN

Obtaining Plasmodium vivax sporozoites is essential for in vitro culture of liver stage parasites, not only to understand fundamental aspects of parasite biology, but also for drug and vaccine development. A major impediment to establish high-throughput in vitro P. vivax liver stage assays for drug development is obtaining sufficient numbers of sporozoites. To do so, female anopheline mosquitoes have to be fed on blood from P. vivax-infected patients through an artificial membrane-feeding system, which in turns requires a well-established Anopheles colony. In this study we established conditions to provide a robust supply of P. vivax sporozoites. Adding a combination of serum replacement and antibiotics to the membrane-feeding protocol was found to best improve sporozoite production. A simple centrifugation method appears to be a possible tool for rapidly obtaining purified sporozoites with a minimal loss of yield. However, this method needs to be better defined since sporozoite viability and hepatocyte infection were not evaluated.


Asunto(s)
Anopheles , Malaria Vivax , Animales , Humanos , Femenino , Plasmodium vivax , Anopheles/parasitología , Malaria Vivax/parasitología , Esporozoítos , Hepatocitos
4.
PLoS Negl Trop Dis ; 17(6): e0011425, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327209

RESUMEN

Malaria is caused by parasite of the genus Plasmodium and is still one of the most important infectious diseases in the world. Several biological characteristics of Plasmodium vivax contribute to the resilience of this species, including early gametocyte production, both of which lead to efficient malaria transmission to mosquitoes. This study evaluated the impact of currently used drugs on the transmission of P. vivax. Participants received one of the following treatments for malaria: i) chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 7 days]; ii) Chloroquine [10 mg/kg on day 1 and 7.5 mg/kg on day 2 and 3] co-administered with one-dose of Tafenoquine [300 mg on day 1]; and iii) Artesunate and Mefloquine [100 mg and 200 mg on day 1, 2 and 3] co-administered with Primaquine [0.5 mg/kg/day for 14 days]. Patient blood was collected before treatment and 4 h, 24 h, 48 h and 72 h after treatment. The blood was used to perform a direct membrane feeding assay (DMFA) using Anopheles darlingi mosquitoes. The results showed 100% inhibition of the mosquito infection after 4 h using ASMQ+PQ, after 24 h for the combination of CQ+PQ and 48 h using CQ+TQ. The density of gametocytes declined over time in all treatment groups, although the decline was more rapid in the ASMQ+PQ group. In conclusion, it was possible to demonstrate the transmission-blocking efficacy of the malaria vivax treatment and that ASMQ+PQ acts faster than the two other treatments.


Asunto(s)
Anopheles , Antimaláricos , Malaria Vivax , Malaria , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Primaquina/farmacología , Primaquina/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Anopheles/parasitología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium vivax
5.
Malar J ; 21(1): 163, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658964

RESUMEN

BACKGROUND: The colonization of mosquitoes susceptible to Plasmodium vivax via direct membrane feeding assay (DMFA) has the potential to significantly advance our knowledge of P. vivax biology, vector-parasite interaction and transmission-blocking vaccine research. Anopheles darlingi and Anopheles deaneorum are important vectors of malaria in the Western Brazilian Amazon. Since 2018, well-established colonies of these species have been maintained in order to mass produce mosquitoes destined for P. vivax infection. Plasmodium susceptibility was confirmed when the colonies were established, but susceptibility needs to be maintained for these colonies to remain good models for pathogen transmission. Thus, the susceptibility was assessed of colonized mosquitoes to P. vivax isolates circulating in the Western Amazon. METHODS: Laboratory-reared mosquitoes from F10-F25 generations were fed on P. vivax blood isolates via DMFA. Susceptibility was determined by prevalence and intensity of infection as represented by oocyst load seven days after blood feeding, and sporozoite load 14 days after blood feeding. The effect of infection on mosquito survival was evaluated from initial blood feeding until sporogonic development and survival rates were compared between mosquitoes fed on infected and uninfected blood. Correlation was calculated between gametocytaemia and prevalence/intensity of infection, and between oocyst and sporozoite load. RESULTS: Significant differences were found in prevalence and intensity of infection between species. Anopheles darlingi showed a higher proportion of infected mosquitoes and higher oocyst and sporozoite intensity than An. deaneorum. Survival analysis showed that An. deaneorum survival decreased drastically until 14 days post infection (dpi). Plasmodium vivax infection decreased survival in both species relative to uninfected mosquitoes. No correlation was observed between gametocytaemia and prevalence/intensity of infection, but oocyst and sporozoite load had a moderate to strong correlation. CONCLUSIONS: Colonized An. darlingi make excellent subjects for modelling pathogen transmission. On the other hand, An. deaneorum could serve as a model for immunity studies due the low susceptibility under current colonized conditions. In the application of DMFA, gametocyte density is not a reliable parameter for predicting mosquito infection by P. vivax, but oocyst intensity should be used to schedule sporozoite experiments.


Asunto(s)
Anopheles , Malaria Vivax , Animales , Humanos , Malaria Vivax/epidemiología , Mosquitos Vectores/parasitología , Oocistos , Plasmodium vivax , Esporozoítos
6.
Malar J ; 12: 180, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23731624

RESUMEN

BACKGROUND: Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. METHODS: Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. RESULTS: An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. CONCLUSION: The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be transferred back to humans and how persistent the parasite is in monkeys in the wild so to be efficient reservoirs of the disease, is yet to be evaluated. Finding different species of monkeys infected with this parasite species suggests indeed that these animals can act as reservoirs of human malaria.


Asunto(s)
Malaria/veterinaria , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/parasitología , Animales , Sangre/parasitología , Brasil/epidemiología , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Malaria/epidemiología , Malaria/parasitología , Datos de Secuencia Molecular , Plasmodium/clasificación , Plasmodium/genética , Plasmodium/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Prevalencia , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA